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Problem 16.3

Let f(€) be an arbitrary (twice differentiable) function. Show by direct substitution that
f(z — ct) is a solution of the wave equation (16.4).

Solution

The wave equation is given by equation (16.4) on page 684.
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Find the derivatives of the given function u(x,t) = f(z — ct) by using the chain rule.
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Therefore, u(x,t) = f(x — ct) is a solution of the wave equation.
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