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Problem 16.3

Let f(ξ) be an arbitrary (twice differentiable) function. Show by direct substitution that
f(x− ct) is a solution of the wave equation (16.4).

Solution

The wave equation is given by equation (16.4) on page 684.

∂2u

∂t2
= c2

∂2u

∂x2
(16.4)

Find the derivatives of the given function u(x, t) = f(x− ct) by using the chain rule.
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f(x− ct) = f ′(x− ct)

∂

∂t
(x− ct) = f ′(x− ct)(−c) = −cf ′(x− ct)
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−cf ′(x− ct)
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= −cf ′′(x− ct)

∂

∂t
(x− ct) = −cf ′′(x− ct)(−c) = c2f ′′(x− ct)
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=
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f(x− ct) = f ′(x− ct)

∂

∂x
(x− ct) = f ′(x− ct)(1) = f ′(x− ct)
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f ′(x− ct) = f ′′(x− ct)

∂

∂x
(x− ct) = f ′′(x− ct)(1) = f ′′(x− ct)

Notice that
∂2u

∂t2
= c2f ′′(x− ct) = c2

∂2u

∂x2
.

Therefore, u(x, t) = f(x− ct) is a solution of the wave equation.
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