Problem 16.3

Let $f(\xi)$ be an arbitrary (twice differentiable) function. Show by direct substitution that $f(x-c t)$ is a solution of the wave equation (16.4).

Solution

The wave equation is given by equation (16.4) on page 684.

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{16.4}
\end{equation*}
$$

Find the derivatives of the given function $u(x, t)=f(x-c t)$ by using the chain rule.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial}{\partial t} f(x-c t)=f^{\prime}(x-c t) \frac{\partial}{\partial t}(x-c t)=f^{\prime}(x-c t)(-c)=-c f^{\prime}(x-c t) \\
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\frac{\partial}{\partial t}\left[-c f^{\prime}(x-c t)\right]=-c f^{\prime \prime}(x-c t) \frac{\partial}{\partial t}(x-c t)=-c f^{\prime \prime}(x-c t)(-c)=c^{2} f^{\prime \prime}(x-c t) \\
\frac{\partial u}{\partial x} & =\frac{\partial}{\partial x} f(x-c t)=f^{\prime}(x-c t) \frac{\partial}{\partial x}(x-c t)=f^{\prime}(x-c t)(1)=f^{\prime}(x-c t) \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x} f^{\prime}(x-c t)=f^{\prime \prime}(x-c t) \frac{\partial}{\partial x}(x-c t)=f^{\prime \prime}(x-c t)(1)=f^{\prime \prime}(x-c t)
\end{aligned}
$$

Notice that

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} f^{\prime \prime}(x-c t)=c^{2} \frac{\partial^{2} u}{\partial x^{2}} .
$$

Therefore, $u(x, t)=f(x-c t)$ is a solution of the wave equation.

